In the mathematical field of graph theory, a vertex-transitive graph is a graph G such that, given any two vertices v1 and v2 of G, there is some automorphism
such that
In other words, a graph is vertex-transitive if its automorphism group acts transitively upon its vertices.[1] A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical.
Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph).
Contents |
Finite vertex-transitive graphs include the symmetric graphs (such as the Petersen graph, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also vertex-transitive, as are the vertices and edges of the Archimedean solids (though only two of these are symmetric).
The edge-connectivity of a vertex-transitive graph is equal to the degree d, while the vertex-connectivity will be at least 2(d+1)/3.[2] If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to d.[3]
Infinite vertex-transitive graphs include:
Two countable vertex-transitive graphs are called quasi-isometric if the ratio of their distance functions is bounded from below and from above. A well known conjecture states that every infinite vertex-transitive graph is quasi-isometric to a Cayley graph. A counterexample has been proposed by Diestel and Leader.[4] Most recently, Eskin, Fisher, and Whyte confirmed the counterexample.[5]